14 research outputs found

    BeeSpace Navigator: exploratory analysis of gene function using semantic indexing of biological literature

    Get PDF
    With the rapid decrease in cost of genome sequencing, the classification of gene function is becoming a primary problem. Such classification has been performed by human curators who read biological literature to extract evidence. BeeSpace Navigator is a prototype software for exploratory analysis of gene function using biological literature. The software supports an automatic analogue of the curator process to extract functions, with a simple interface intended for all biologists. Since extraction is done on selected collections that are semantically indexed into conceptual spaces, the curation can be task specific. Biological literature containing references to gene lists from expression experiments can be analyzed to extract concepts that are computational equivalents of a classification such as Gene Ontology, yielding discriminating concepts that differentiate gene mentions from other mentions. The functions of individual genes can be summarized from sentences in biological literature, to produce results resembling a model organism database entry that is automatically computed. Statistical frequency analysis based on literature phrase extraction generates offline semantic indexes to support these gene function services. The website with BeeSpace Navigator is free and open to all; there is no login requirement at www.beespace.illinois.edu for version 4. Materials from the 2010 BeeSpace Software Training Workshop are available at www.beespace.illinois.edu/bstwmaterials.php

    Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema

    Full text link
    BACKGROUND: Hereditary angioedema is characterized by recurrent attacks of angioedema of the skin, larynx, and gastrointestinal tract. Bradykinin is the key mediator of symptoms. Icatibant is a selective bradykinin B2 receptor antagonist. METHODS: In two double-blind, randomized, multicenter trials, we evaluated the effect of icatibant in patients with hereditary angioedema presenting with cutaneous or abdominal attacks. In the For Angioedema Subcutaneous Treatment (FAST) 1 trial, patients received either icatibant or placebo; in FAST-2, patients received either icatibant or oral tranexamic acid, at a dose of 3 g daily for 2 days. Icatibant was given once, subcutaneously, at a dose of 30 mg. The primary end point was the median time to clinically significant relief of symptoms. RESULTS: A total of 56 and 74 patients underwent randomization in the FAST-1 and FAST-2 trials, respectively. The primary end point was reached in 2.5 hours with icatibant versus 4.6 hours with placebo in the FAST-1 trial (P=0.14) and in 2.0 hours with icatibant versus 12.0 hours with tranexamic acid in the FAST-2 trial (P<0.001). In the FAST-1 study, 3 recipients of icatibant and 13 recipients of placebo needed treatment with rescue medication. The median time to first improvement of symptoms, as assessed by patients and by investigators, was significantly shorter with icatibant in both trials. No icatibant-related serious adverse events were reported. CONCLUSIONS: In patients with hereditary angioedema having acute attacks, we found a significant benefit of icatibant as compared with tranexamic acid in one trial and a nonsignificant benefit of icatibant as compared with placebo in the other trial with regard to the primary end point. The early use of rescue medication may have obscured the benefit of icatibant in the placebo trial. (Funded by Jerini; ClinicalTrials.gov numbers, NCT00097695 and NCT00500656.

    Abstracts from the 23rd Italian congress of Cystic Fibrosis and the 13th National congress of Cystic Fibrosis Italian Society

    No full text
    Cystic Fibrosis (CF) occurs most frequently in caucasian populations. Although less common, this disorder have been reported in all the ethnicities. Currently, there are more than 2000 described sequence variations in CFTR gene, uniformly distributed and including variants pathogenic and benign (CFTR1:www.genet.sickkids.on.ca/). To date,only a subset have been firmily established as variants annotated as disease-causing (CFTR2: www.cftr2.org). The spectrum and the frequency of individual CFTR variants, however, vary among specific ethnic groups and geographic areas. Genetic screening for CF with standard panels of CFTR mutations is widely used for the diagnosis of CF in newborns and symptomatic patients, and to diagnose CF carrier status. These screening panels have an high diagnostic sensitivity (around 85%) for CFTR mutations in caucasians populations but very low for non caucasians. Developed in the last decade, Next-Generation Sequencing (NGS) has been the last breakthrough technology in genetic studies with a substantial reduction in cost per sequenced base and a considerable enhancement of the sequence generation capabilities. Extended CFTR gene sequencing in NGS includes all the coding regions, the splicing sites and their flankig intronic regions, deep intronic regions where are localized known mutations,the promoter and the 5'-3' UTR regions. NGS allows the analysis of many samples concurrently in a shorter period of time compared to Sanger method . Moreover, NGS platforms are able to identify CFTR copy number variation (CNVs), not detected by Sanger sequencing. This technology has provided new and reliable approaches to molecular diagnosis of CF and CFTR-Related Disorders. It also allows to improve the diagnostic sensitivity of newborn and carrier screeningmolecular tests. In fact, bioinformatics tools suitable for all the NGS platforms can filter data generated from the gene sequencing, and analyze only mutations with well-established disease liability. This approach allows the development of targeted mutations panels with a higher number of frequent CF mutations for the target populationcompared to the standard panels and a consequent enhancement of the diagnostic sensitivity. Moreover, in the emerging challenge of diagnosing CF in non caucasians patients, the possibility of customize a NGS targeted mutations panel should increase the diagnostic sensitivity when the target population has different ethnicities

    The Leishmaniases

    No full text

    Correction to: Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial

    No full text
    corecore